

Road Crash Data Review and Reporting Training on improvement to crash data management Istanbul - 25-27 June 2024

DATA ANALYSIS, CONTRIBUTING FACTORS IDENTIFICATION

Antonino Tripodi Road Crash Data Management Expert FRED Engineering

Data systems importance

• Assessing comprehensively road safety performance

Using road safety data

- Wide variety of uses for data, with many different users
- Although summary data (e.g. number of crashes, number of deaths, etc.) are available in most countries, more detailed information is required to meet the requirements of these users
- Without this data collection, it is not possible to adopt a factual approach to road safety management

Macroscopic vs microscopic data

Level of detail

Macroscopic vs microscopic data

- Macroscopic data is mainly established by police services
 - ~50-100 variables
 - To obtain national statistics, monitor crash trends, identify high-risk sections
- Microscopic data is far more detailed
 - More than 500 variables
 - Collected by research institutes, hospitals, insurance companies, ...
 - For active and passive vehicle safety system development, road infrastructure improvements and policy making

Data analysis process

Territorial comparison

Macro analysis of crash data Heatmaps and risk mapping in corridors Detailed analysis of critical locations

Data collection

Identification of contributing factors

> Potential countermeasures

Statistics by mode

Macro analysis of crash data Heatmaps and risk mapping in corridors Detailed analysis of critical locations Identification of contributing factors

> Potential countermeasures

Data collection

Statistics by age

Data collection

Heatmaps and risk mapping in corridors

Heatmaps for finding critical intersections

Risk mapping for finding critical road sections

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Data collection

Macro analysis of crash data

Heatmaps and risk mapping in corridors Detailed analysis of critical locations

> Identification of ontributing factor Potential countermeasures

Heatmaps

Data collection

Macro analysis of crash data

Heatmaps and risk mapping in corridors

Risk mapping

Detailed analysis of critical locations

Example for intersections

Data collection Macro analysis of crash data Heatmaps and risk mapping in corridors Detailed analysis of critical locations

Potential countermeasures

. . .

Crash ID	Year		Long	Severity	Surface condition	
1001	2021	X1	Y1	Injury	Dry	
1002	2022	X2	Y2	Fatality	Dry	
1003	2024	X3	Y3	Injury	Slippery	
1004	2022	X4	Y4	Injury	Dry	
1005	2019	X5	Y5	Fatality	Slippery	
1006	2021	X6	Y6	Injury	Wet, damp	
1007	2021	X7	Y7	Injury	Dry	
1009	2023	X8	Y8	Fatality	Wet, damp	

. . .

- - -

- - -

Dry * Snow, frost, ice, slush * Slippery * Wet, damp * Flood * Other * Unkwnown

TIVERIVAL. THIS Information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

- - -

- - -

Example for intersections

	Crash ID	Year	Lat	Long	Fat.	lnj.	Road user type	
	1001	2024	X1	Y1	1	2	Driver	
	1002	2024	X2	Y2	0	0	Passenger	
	1003	2023	X3	Y3	0	1	Pedestrian	
	1004	2022	X4	Y4	2	1	Passenger	
11	1005	2019	X5	Y5	0	0	Passenger	
	1006	2021	X6	Y6	0	2	Pedestrian	
	1007	2024	X7	Y7	1	3	Driver	
	1009	2023	X8	Y8	3	4	Pedestrian	

Factors affecting road safety

How to reduce crashes and casualties?

Decreasing the amount of travel

Data collection

Macro analysis of crash data

Heatmaps and risk mapping in corridors Detailed analysis of critical locations Identification of contributing factors

> Potential countermeasures

- Shifting travel to transportation modes with lower levels of risk
- Reducing crash rate for a given amount of travel

Protecting individuals from injuries

How to identify contributing factors?

For instance, using methodologies like the Haddon Matrix

 Link main factors affecting road crashes (persons / vehicles / road conditions)
with periodicity (before / during / after the crash)

Period	Human factors	Vehicle factors	Road factors
Before the crash (causes of the hazardous situation)	cell phone use, alcohol drinking, distraction	lack of vehicle maintenance, bald tires, worn brakes	inadequate lane width, inadequate roadway shoulders, inadequate maintenance, poor visibility
During the crash (causes of crash severity)	failure to wear a seat belt, failure to wear PPEs, vulnerability to injury, age	type of vehicle, bumper heights and energy absorption, headrest design, airbag operations	grade, pavement <u>friction</u>
After the crash (factors of crash outcome)	age, gender	ease of removal of injured passengers	emergency services response time, subsequent post-crash care

Selection of interventions

Interventions chosen based on contributing factors

