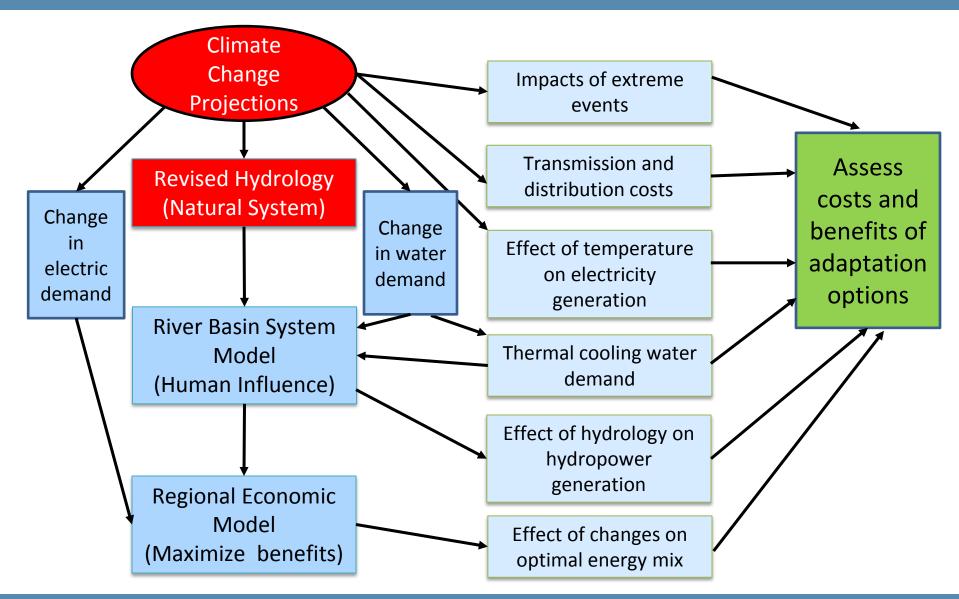
Central Asia Regional Assessment of Energy Sector Vulnerability to Climate Change -- Update

20th CAREC Energy Sector Coordinating Committee Meeting September 7, 2015, Kuala Lumpur, Malaysia



Central Asia Regional Assessment of Energy Sector Vulnerability to Climate Change -- Update

Objective:

The overall objective of this project is to support countries in the region in understanding climate change-induced energy sector vulnerabilities, and building resilience through both national and regionally coordinated adaptation policies. The assessment will help guide current and future decision-makers on options for investments and management of power generation and transmission, and better understand crosssectoral implications

2. IMPACT METRICS FOR ENERGY SYSTEM

Preliminary Results

Hazards

Impacts

Adaptation with regional benefits

- for temperature show some convergence, unlike precipitation forecasts which disagree considerably.
- Hydrologic impacts are highly uncertain, with little convergence on predictions of magnitude, direction, or timing of change, and with possible differences even within a basin.
- Overall warming will reduce energy demand in winter; changes in summer demand will depend on uptake of air conditioning and demand for irrigation given changes in hydrology, especially in downstream countries.
- Hydropower investments may either benefit or experience reduced/more variable generation, reflecting the uncertainty in hydrology. Furthermore, these impacts may change over time.
- Higher temperatures are likely to marginally reduce efficiency of transmission systems, although extreme events may increase risk of weather outages.
- The frequency of flood events that substantially damage energy infrastructure (generation, transmission and distribution) across the region is likely to increase,

 Asia Regional Economic Cooperation Postpacially in wet climate scenarios.

- Energy efficiency and energy trade reduce climate risk while offering "no regrets" economic benefits at both national and regional scales.
- Climate uncertainty requires a shift in investment and operations management, to integrate a robust decision-making approach that selects investment paths to minimize risks across a full range of climate scenarios.
 - Investments in ability to understand and track climate change, and thereby support robust decision-making such as new information technologies and analytical capacities are needed.
- Coordination on small reservoir operations as well as basin-wide water management reduce risks and increase adaptation benefits will help manage the more volatile and possibly reduced availability of water.

Next Steps

- Completion of draft report: November-December
- Presentation and discussion of the study outcomes: next ESCC meeting
- Finalization of report: next ESCC meeting +1

month